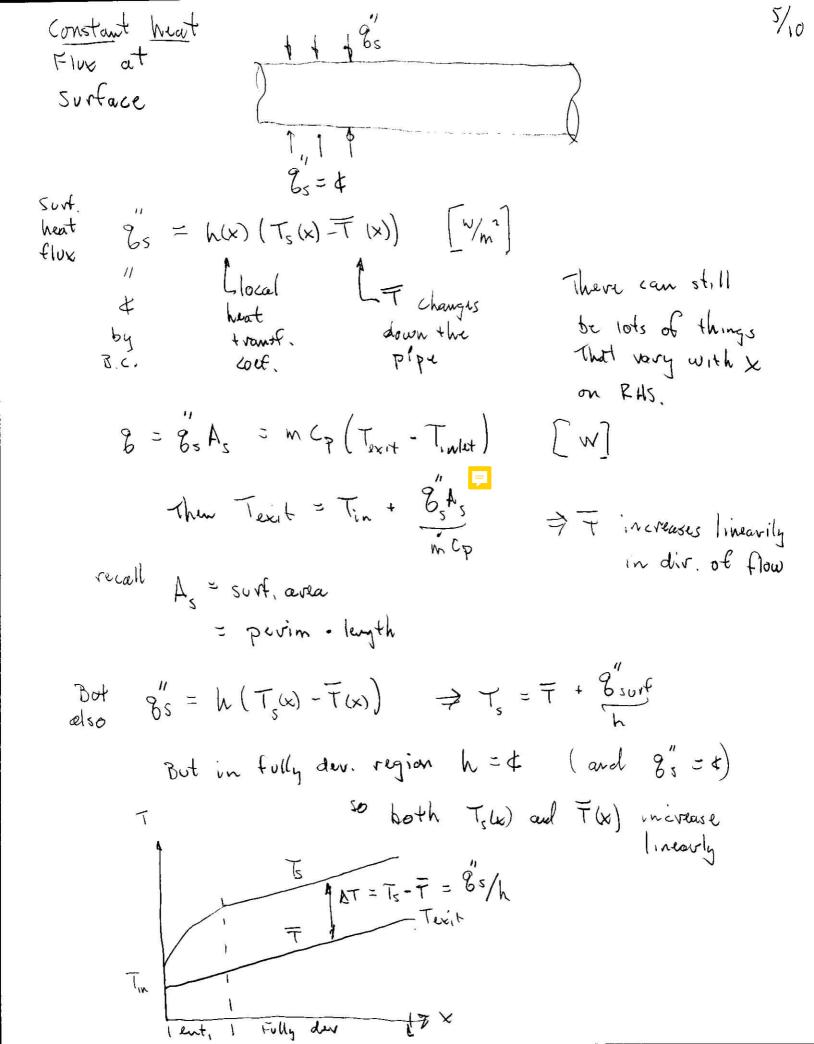


Similar results for thermal Sq(X) 3/0 once we wit the wel of the intrance region (not are in the fully developed region) we have 20(r,x) = C => U=U(r) only $\frac{\partial}{\partial x} \begin{bmatrix} T(x) & -T(y, x) \\ \frac{1}{T_s} & -\overline{T} \end{bmatrix} = 0 \qquad \Rightarrow T = T(y) \text{ only}$ Conseq. of $\int h(x) \frac{\partial T}{\partial r} \neq f(x)$ $T = T(r) \text{ only } \int SO h(x) = k (\frac{\partial T}{\partial r}) = r = R$ $\begin{pmatrix} \log d \\ value \end{pmatrix} = T_s = T_s$ $\neq f(x)$ This in the fully developed section fric factor f # Function (10) h = function (x) Role of Pr= V/X Pr M Pr=1 Pr<1

So what are entry length results?
Laminor
Hand
$$\approx 0.05 \text{ Re D}$$

Laminor
Hand $\approx 0.05 \text{ Re D}$
Control of the entry length \approx diancter of type
if $\text{Re} \approx 2300$ $\approx 111 \text{ D}$
Turbs,
Flow $\text{Lh} \approx \text{Lh} \approx 10 \text{ D}$
No(x) for either $T_5 = 4 \text{ or } q = 4 \text{ at surface}$
Turbylent
 400
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 1000
 1000
 1000
 1000
 100



In fully developed region, the dimensionless
$$\Theta = \frac{T_s - T}{T_s - T}$$
 is furth
to $\frac{\partial}{\partial x} \left(\frac{T_s - T}{t_s - T} \right) = 0 = \frac{\partial T_s}{\partial x} - \frac{\partial T}{\partial x}$ leads the $\frac{\partial T}{\partial x} = \frac{\partial T_s}{\partial x} = \frac{\partial T_s}{\partial x}$
in which case
 $\frac{\partial T}{\partial x} = \frac{\partial T_s}{\partial x} = \frac{\partial T_w}{\partial x} = \frac{\partial^2 s}{\partial x} \cdot \frac{Panim}{ir} = t$ (8)
from simple
heads that, of
a slice through
the pipe
Nome of these gradients (wrt x) vary
down the inorth of the pipe.
 $\int G from x=0$ where $\overline{T} = T_{inlet}$ we get
 $\overline{T} = T_{inlet} + \left(\frac{\partial s}{\partial x} P\right) \times$
Eval. this $\mathfrak{S} = t$ (where $\overline{T} = T_{exit}$) and recall $A_s = p \cdot I$
we get $T_{exit} = T_{inlet} + \frac{\partial^2 s}{\partial x} A_s$
For a circular tube $p = 2\pi R$ $m = 3\overline{O} A_{coss} = S\overline{O} (\pi R)$
 $\frac{\partial T}{\partial x} = \frac{dT_s}{dx} = \frac{dT_s}{s} = \frac{2g's}{s\overline{O} Const $g'' flox$
 $\mathfrak{S} = \frac{dT_s}{dx} = \frac{dT_s}{s} = \frac{2g's}{s\overline{O} Const $g'' flox$$$

Now what about B.C. of
$$T_s = d$$
 @ wall? $T_s = d$
indet
Roughly speaking, from Newbois law of cooling
 $g = hA_{surf}$ $DT_{avg} = hA_s(T_s - \overline{T})_{average}$ [W]
 $g = hA_{surf}$ $DT_{avg} = hA_s(T_s - \overline{T})_{average}$ [W]
 $average over that is$
There are 2 ways of thinking about this.
Arithmedic mean temp. difference DT_{gm} .
 $DT_{avg} \doteq DT_{ave.} = DT_1 + DT_0 = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s - T_0)$
 $= T_s - (T_1 + T_0) = (T_s - T_1) + (T_s$

hads to
$$d(T_s - T) = -hp dx$$
 (from X=0 $(T = T_i)^{S/10}$
hads to $(T_s - T_e) = -hA_s$ (h is the 4 average
had to $x=L$ $(T = T_e)$
had to $x=L$ $(T = T_e)$
had to $x=L$ $(T = T_e)$
exponent to got
 $T_e - T_s = exp(-hA_s)$ (h is the 4 average
had trans, colf.)
exponent to got
 $T_e - T_s = exp(-hA_s)$ where $A_s = ph$
If you replace $A_s = pL$ by Px , you get soln, for
 $\overline{T(x)} - T_s = exp(-hPX)$
We define $\frac{hA_s}{hcp} = NTU$ Number of transfer units
If NTU > 5 them Tairt $\approx T_{surf}$
 $NTU > 5$ helps to add
more length.
 $NTU < 5$ helps to add
more length to pipe

Solve (*) for
$$in \leq p = \frac{-hAs}{Im} \frac{T_s - T_e}{T_s - T_i}$$

put this into $g = in \leq p(T_e - T_i)$ [W] near start of
today
we get $g = hA_s \int \frac{(T_i - T_e)}{Im} \frac{1}{T_s - T_e} = hA_s \Delta T_{im}$
where ΔT_{log} mean $= \frac{T_i - T_e}{Im} \frac{1}{T_s - T_i} \int \frac{Im}{Im} \frac{\Delta T_e}{\Delta T_i}$
where ΔT_{log} mean $= \frac{T_i - T_e}{Im} \frac{Im}{Im} \frac{\Delta T_e}{\Delta T_i}$
where ΔT_{log} mean $L_m \left(\frac{T_s - T_e}{T_s - T_i}\right) \int \frac{Im}{Im} \left(\frac{\Delta T_e}{\Delta T_i}\right)$
This is the way to go rather
that the Arit mean temp. dif.
Worker $= \frac{Im}{Im} \frac{Im}{$

Assumptions: Steady state
$$floid prop.$$
 (%)
• h is f • Receptive is negl.
(inside tube $T = oclipite tube T$)
Kee ff
Mall, prop: © Thelk = $(15 + 115)^{\circ}C = 65^{\circ}C$
 $Cp = 4187$ Kg K phase change = 2203 kg
head $0120^{\circ}C = 2203$ kg
head $0120^{\circ}C = 105^{\circ}C = 200$ kg
head $0120^{\circ}C = 105^{\circ}C = 105^{\circ}C$